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It is shown by rigorous mathematical methods that the so-called Fermi contact 
interaction does not define any selfadjoint Hamiltonian, and the only possible 
form of contact interaction localized strictly at r = 0 is found. However,  the 
Fermi contact interaction retains sense when used as a bilinear form in the 
perturbation theory for Dirac electrons. Some results obtained earlier by other 
authors are confirmed and interpreted by our analysis. 
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1. Introduction 

During a long time, in the quantum theory of atoms and molecules considerable 
interest has been paid to the so-called Fermi contact interaction (FCI) [ 1-6] which 
is a rather unusual potential proportional to 63(r). The same type of interaction 
describes the Darwin correction in the theory of hydrogen-like atoms [7, 8]. For 
spherically symmetric systems such a potential acts on s-states only [2-8]. 
Unfortunately,  serious doubts about the possibility to use FCI arose on account of 
divergent results both in the formal perturbation theory [2, 4, 5] and variational 
principle estimates [6]. To remove this discrepancy, a modification of FCI has 
been proposed [4, 5]. 

The aim of the present paper is to find a mathematically correct form of operators 
acting in some sense at the point r = 0 only. Moreover,  we shall clarify the origin of 
the discrepancy mentioned above. To make the paper easier readable, formal 
mathematical considerations are strongly reduced and a proper  set of references is 
given instead. 
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2. Hamiltonians, Bilinear Forms and Boundary Conditions 

First, let us consider an electron moving under the influence of a nonsingular, 
spherically symmetric potential U(r), with the Hamiltonian (atomic units are used 
throughout the paper) 

3 2 0 2 3 2 

H = - �89 U(r), A = ~x2+-~y24 Oz 2. (1) 

Restricting ourselves to s-states, and by means of the substitution [9] 

F ( r ) - - F ( r )  ~ f ( r ) =  rF(r) (2) 

one can reduce the Hamiltonian (1) to the one-dimensional form 

h =  -�89 d2 
-~r2+U(r), 0 - < r < ~ .  (3) 

When going from three- to the one-dimensional formulation, the following 
formula will also be useful [4-6]: 

83(r) ~ (4"trr2)-lS(r). (4) 

For a moment we shall consider H (or h) as differential expression acting only on 
such functions which are equal to zero in some neighbourhood of point r = 0 (or 
r = 0). For such a type of functions, addition or even existence of a contact 
potential at the point r = 0 is irrelevant. Now it is easy to understand (cf. [10-12]) 
that the description of all interactions with support at coordinate origin is actually 
equivalent to finding all boundary conditions at this point, inverting the differen- 
tial expression H (or h) into a selfadjoint operator. The answer is well known and 
the operator h (3) will be considered for simplicity [10, 13]. Namely, for any c real 
or c = + co, we impose the boundary conditions 

cf(O)- f ' (O) = O, c is real, (5) 

f (O)= O, c = +oo (6) 

on the functions f from the domain of an operator based on (3). By fixing c, we 
invert the differential expression (3), and via (2) also (1), into selfadj oint operators 
he, He, respectively, and all selfadjoint extensions of (1), (3) in the Hilbert space of 
square-integrable functions are obtained in this way. Hence, no contact inter- 
action can be omitted in our analysis. As will be shown below (Eqs. (8) and (9)), 
boundary conditions determine uniquely the contact potential acting at the point 
r = 0 only. In quantum theory, the case c -- § i.e. the boundary condition (6) is 
used almost exclusively [9]. 

It is useful to consider the bilinear form (cf. Ref. [14], Chap. VI) 

f 
Qc(f, g) = J g*(hff) dr, (7) 

associated with the operator he, where f fulfils (5) or (6) for chosen c. Integrating in 
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(7) by parts, we get ([14], Chap. VI, example 2.16) 

Qc(f, g) = I[�89 + g* Uf+  �89 dr. (8) 

In (8), the expression oo6(r) appearing for c = +oo is a symbol, forcing the 
boundary condition (6). By means of the right-hand side of (8), one can extend 
Qc(f, g) (for finite c) also to functions not fulfilling (5). However, using the theory 
of bilinear forms [14] or the variational principle technique, the condition (5) will 
be restored again. 

From (2) we see that for finite c, eigenfunctions in the three-dimensional variant 
(1) behave as r -1 for r --> 0. This does not violate essentially the quantum- 
mechanical axioms. For any volume V, iv I f l  2 d3x is finite, and the flux of current 
of probability through any surface is due to (5) nonsingular as well. Nevertheless, 
let us note that the mean value of the kinetic energy operator T need not be 
defined in this case [6], as, by definition, T = - �89 can only act on functions finite 
at r = 0 .  

By means of (2) and (4) we rewrite (8) also for the three-dimensional case: 

= I[�89 + G* UF + 2qrc r263(r)G*F] d3x. oc (F, G) (9) 

One should not be surprised by the appearance of the unusual functional r263(r): 
the latter has no (nonzero) analogy when considering continuous functions only. It 
can be defined due to the fact that we admit the r-a-like behaviour of F, G. 
(Clearly, we define ~rZ63(r)u (r) d3x = lim,_,o rZu (r).) 

3. Modifications for Coulomb Interaction 

For application to quantum-machanical problems [2-8] one has to include the 
Coulomb interaction as well, i.e. to consider the potential 

U(r) = - r -~ + Uo(r) (10) 

with nonsingular Uo(r). Repeating all the considerations of Sect. 2, we find 
that several changes have to be done. Instead of boundary conditions (5), (6), 
the following asymptotic conditions are found for r ~ 0+: 

f = c o n s t ( 1 - 2 r l n r + c r ) + o ( r ) ,  c is finite, (11) 

f =  0(r), c = +oo. (12) 

The asymptotes (11), (12) follow from the exact solutions (17), (18) for the 
hydrogen atom. The detailed derivation does not differ substantially from this for 
other types of singular differential operators [10-12]. Moreover, for fni te  c the 
part of integrand in (8) containing r -a (and analogically in (9)) should be 
regularized, taking 

lim [I~g*r-a f d r - l n  (13) 
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This result can be verified by going from (7) to (8) and taking (11) into account. 
The infinite regularizing term appears when integrating by parts. By means of the 
same method as used in [12], it can be proved that we have described all 
selfadjoint extensions of the differential operator  (3) with the potential (10). 

4. Contact Interaction 

The bilinear forms (8) and (9) (or the corresponding variational principle) in the 
sense explained above provide a rigorous formulation of the idea of a potential 
acting at the coordinate origin only. We have found in Sects. 2 and 3 all the 
realizations of this type of interactions, and so we can state on the basis of (9) that 
FCI which is of the 83(r) form, defines no selfadjoint operator.  Instead of this we 
have found another form of contact potential, 27rr283(r), which we shall call 
modified Fermi contact interaction (MFCI). The presence of the term r 2 in MFCI 
shows, roughly speaking, that FCI is infinitely large when compared with MFCI. 
However,  MFCI is consistent, in certain sense at least, with the modified Fermi 
potential advocated by Blinder [4, 5, 15]. Indeed, changing MFCI slightly, 

4,n'r283(r) = 8(r)  ~ 8 ( r -  ro), r0 > 0 but small, (14) 

we get the modified Fermi potential of [4, 5] up to a numerical factor 2~r  2 
(proportional to surface of the sphere on which the interaction occurs), which for 
fixed r0 can be absorbed into the definition of the coupling constant. However,  the 
question about the interpretation of the coupling constant when going from FCI to 
MFCI remains to be clarified, see also Sect. 6. Another  problem is to be 
mentioned. In the limit c ~ 0, we do not return to the non-interacting model 
(6), (12), corresponding to c = + ~  [11]. This is an example of a complication 
being present, perhaps, in a wider class of physical theories [16]. 

5. Example: The Hydrogen Atom 

To get a bet ter  understanding of the conclusions made in Refs. [2, 4-6],  let us 
consider the case of a pure Coulomb potential (10), 

U ( r )  = - r -1, (15) 

in more detail. 

Only the one-dimensional formulation (2), (3) for the s-states will be considered. 
For an energy E < 0, 

1 
E =  292, ~ > 0 ,  (16) 

the following set of square-integrable candidates for eigenfunctions is found (cf. 
[4, 5, 9]): 

f = p exp ( -p /2 )qb( -v  + 1, 2, p) = M~,I/2(p),  

~, = n = 1, 2, 3 . . . .  (17) 
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f =  p exp ( - p / 2 ) ~ ( -  u + 1, 2, p) = W~,I/z(p), 

u # n ,  (18) 

where p = 2r/u, ~ and �9 are the confluent hypergeometric functions of the first 
and second kind, respectively, and M, W are Whittaker functions [17]. The 
hydrogen atom eigenfunctions (c = + co) are given by (17) [9]. To find the point 
spectrum for finite values of c, one has to expand (18) for small r and compare it 
with (11). (The continuous spectrum E = 0 is independent of c.) For this purpose 
we use Eq. (13), Chap. 6.7 of Ref. [17] (see also [4]) and obtain 

1 - 2 r l n r + c r =  1 - 2 r l n r + 2 r [ - 2 3 , + l - O ( 1 - u ) - l n ( 2 / u ) - l ] ,  u>O,  

(19) 

which represents an equation for u = u(c). In (19), y is the Euler constant and 0 is 
the logarithmic derivative of the F-function [17]. Eq. (19) has a countable set of 
solutions Un(C)= n +Sn(c), n = 1, 2, 3 . . . . .  where 8n are the so-called quantum 
defects [5], and are strictly increasing functions of c. Moreover, it is easy to check 
that 8n (+ CO) = 0, 8n (--CO) = -- 1. TO see this, it is sufficient to consider a graphical 
representation of Eq. (19). We are able to find also the first term in the expansion 
of 8n for c ~ • For this purpose, the asymptotic formula ~ ( z ) =  
-1/(z + n)+0(1), z ~ - n  [17] is to be substituted into (19). Finally, one finds 

8.(c)= - 2 / c + o ( 1 / c ) ,  c ~ +co, n = 1, 2, 3 . . . .  (20) 

8,,(c) = - 1 - 2 / c + o ( 1 / c ) ,  c --> -co,  n =2,  3 . . . .  (21) 

8 1 ( c ) = - 1 - 1 / c + o ( 1 / c ) ,  c --* -co.  (22) 

Asymptotical properties of the eigenvalues follow now from (16) and (20)-(22). 
We see immediately that for c -+ + co, we approach the hydrogen atom spectrum, 
whereas for c - * - c o ,  the ground state energy diverges, E l - + - c o .  (This is, 
undoubtedly, an illustration of a quite general situation, cf. Refs. [12] or [14], 
Chap. VII, example 1.11. The last mentioned example shows that when eigen- 
values are viewed as analytic functions of c, their behaviour becomes very 
complex when ]c I-+ co.) This essentially explains the results of [2, 4-6]. Indeed, the 
missing factor r 2 in the FCI (when compared with MFCI) makes FCI infinitely big 
(]c[-> co), positive for repulsive interaction (c--> + co) and negative for attractive 
interaction (c-->-co). (This can be easily understood, e.g. by considering the 
limit ro--> 0 in [4, 5] and by comparing this with MFCI.) Then, the explanation of 
the most important results of [2, 4-6] follows directly from the analysis of 
asymptotic properties of the point spectrum, as given in this section. 

6. Conclusions 

It has been found in Sects. 2, 3 that neither FCI nor the Darwin correction define 
any selfadjoint operator. On the other hand, an application of the first order 
formal perturbation theory to these potentials provides results in complete 
agreement with experiment [2-8]. Fortunately, it is possible to explain this 
controversy. 
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It is important to mention that for a (selfadjoint) Schr6dinger operator H, one can 
define a (symmetric) bilinear form of FCI (or Darwin correction) 

(FIH + ,X 83(r)l G). (23) 

However, no selfadjoint operator is associated with this form. Now, it is easy to 
solve the puzzle. The operators we consider arise from several leading terms of a 
transformation reducing the selfadjoint [18] Dirac Hamiltonian (DH) to a two- 
component Schr6dinger operator, when the transformation is expanded in inverse 
powers of light velocity [3, 8]. Generally, the terms obtained do not represent any 
selfadjoint Hamiltonian. It is more rigorous to apply the same transformation to 
the bilinear form associated with DH, which leads to correctly defined bilinear 
forms (such as, e.g. (23)) instead of the corresponding badly defined "operators". 
Considering DH as perturbed Hamiltonian, and by putting in (23) F = G = 
normalized eigenfunction of H, we find, formally at least, the linear approxima- 
tion (in A) to the respective energy eigenvalue of DH, in full agreement with 
earlier results [1-8]. Nevertheless, the form (23) has no simple physical inter- 
pretation as an independent quantity. 

One may wonder whether FCI could be modified to lead to both, selfadjoint 
operator and perturbation of eigenvalues consistent with results of FCI described 
above. Strictly speaking, there is no simple reason supporting this idea, cf. also 
[15]. However, this can be achieved by a reinterpretation of MCFI. Comparing 
Eqs. (20)-(22) with results of FCI [1-6, 8], we find the following correspondence 
for the hydrogen atom: 

FCI: A63(r), IAI<< 1 ~ MFCI: 2~rr2c83(r), c = -27r/A. (24) 

Moreover, for A > 0, the lowest energy eigenvalue El(c) should be ignored as well 
as the corresponding eigenvector. It is not clear, however, whether a such defined 
contact interaction has actually physical sense. 

To conclude, FCI has to be considered as an expression appearing in the 
perturbation theory for the Dirac Hamiltonian, but having no separate meaning. 
The question of finding a physically appropriate potential for contact interaction is 
open. 

Recently, several abstract mathematical methods of regularization of singular 
Hamiltonians have been discussed [19], which are applicable also to the FCI 
problem. It appears, however, that they do not yield more general results when 
compared with classical methods (similar to the approach used in the present 
paper). Ref. [19] contains also an useful list of references. 

Acknowledgement. The author is indebted to Dr. R. Zahradnik and Dr. M. Tom~i~ek for helpful 
comments on the manuscript. 
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